Person:
Luna, Gerardo Juan Manuel

Loading...
Profile Picture
Email Address
Birth Date
23/12/1976
Research Projects
Organizational Units
Job Title
Investigador
Last Name
Luna
First Name
Gerardo Juan Manuel
Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Breaking the Degeneracy in Magnetic Cataclysmic Variable X-Ray Spectral Modeling Using X-Ray Light Curves
    (IOP Publishing, 2022) Belloni, Diogo; Luna, Gerardo Juan Manuel
    We present an analysis of mock X-ray spectra and light curves of magnetic cataclysmic variables using an upgraded version of the 3D cyclops code. This 3D representation of the accretion flow allows us to properly model total and partial occultation of the postshock region by the white dwarf as well as the modulation of the X-ray light curves due to the phase-dependent extinction of the preshock region. We carried out detailed postshock region modeling in a four-dimensional parameter space by varying the white dwarf mass and magnetic field strength as well as the magnetosphere radius and the specific accretion rate. To calculate the postshock region temperature and density profiles, we assumed equipartition between ions and electrons; took into account the white dwarf gravitational potential, the finite size of the magnetosphere, and a dipole-like magnetic field geometry; and considered cooling by both bremsstrahlung and cyclotron radiative processes. By investigating the impact of the parameters on the resulting X-ray continuum spectra, we show that there is an inevitable degeneracy in the four-dimensional parameter space investigated here, which compromises X-ray continuum spectral fitting strategies and can lead to incorrect parameter estimates. However, the inclusion of X-ray light curves in different energy ranges can break this degeneracy, and it therefore remains, in principle, possible to use X-ray data to derive fundamental parameters of magnetic cataclysmic variables, which represents an essential step toward understanding their formation and evolution.
  • Publication
    Increasing activity in T CrB suggests nova eruption is impending
    (IOP Publishing, 2020) Sokoloski, J. L.; Mukai, Koji; Kuin, Paul M.; Luna, Gerardo Juan Manuel
    Estimates of the accretion rate in symbiotic recurrent novae (RNe) often fall short of theoretical expectations by orders of magnitude. This apparent discrepancy can be resolved if the accumulation of mass by the white dwarf (WD) is highly sporadic, and most observations are performed during low states. Here we use a re-analysis of archival data from the Digital Access to a Sky Century @Harvard survey to argue that the most recent nova eruption in symbiotic RN T CrB, in 1946, occurred during—and was therefore triggered by—a transient accretion high state. Based on similarities in the optical light curve around 1946 and the time of the prior eruption, in 1866, we suggest that the WD in T CrB accumulates most of the fuel needed to ignite the thermonuclear runaways (TNRs) during accretion high states. A natural origin for such states is dwarf-nova like accretion-disk instabilities, which are expected in the presumably large disks in symbiotic binaries. The timing of the TNRs in symbiotic RNe could thus be set by the stability properties of their accretion disks. T CrB is in the midst of an accretion high state like the ones we posit led to the past two nova eruptions. Combined with the approach of the time at which a TNR would be expected based on the 80 yr interval between the prior two novae (2026 ± 3), the current accretion high state increases the likelihood of a TNR occurring in T CrB in the next few years.